Velo-City 2015 Nantes, France

A Global Roadmap to Active Transport: Advancing Cycling Worldwide through Sustainable Development Goals and Low Carbon Development Strategies

Lew Fulton University of California, Davis Jacob Mason ITDP

RIO+20 and COP process has been a key focus

- During 2013-2014, ITDP and UCD developed an Urban Model and created a "High Shift" scenario, toward much greater use of public and active transport, for global cities
- Report published in November 2014, presented at COP in Lima

New Study: Global Roadmap to Active Transport

- This new study will build on previous one, with a "deep dive" on cycling status and potentials around the world
- Analysis to be led by UC Davis and ITDP, in cooperation with International Energy Agency (IEA)
- Study funded by The Union Cycliste Internationale (UCI), the European Cycling Federation (ECF), and the Bicycle Part Suppliers Association (BPSA)
- Also sharing expertise, data, contacts and other resources
- Draft report by September 15, 2015; final report in time for publication and presentation at COP 21 in Paris

Global Roadmap to Active Transport - the Partnership

- Sponsors and advisory board will help us access industry and government data on urban, national, and regional cycle ownership and use data, both motorized and non-motorized
- Support for refined analysis of baseline and projected vehicle use, ownership, and cost data by income level for the 28 country/regional breakouts that make up this study's global analysis.
 - We will create two future scenarios: a baseline and "High Shift" scenario for cycling around the world to 2050
- Support for strategic communications to launch a report in fall 2015 to influence key global negotiations in favor of increased investment in cycling world-wide

Conclusions from First High-Shift Scenario Project

- More investment in clean urban public transport, walking, and cycling between now and 2050 could:
- Cut cumulative public and private urban transportation costs by \$114 trillion, with biggest savings in non-OECD
- Boost public transport mobility of poorest 20% by 300%
- Cut annual CO2 emissions from urban passenger transport by 1.7 GT in 2050, a 40% drop
- Cut cumulative CO2 emissions from urban passenger transport by 25 GT 2015-2050, a 25% drop
- Yield growing cost savings and CO2 savings over time
- Develop only if there is increased private sector and government support & investment in public transport

The Base and High Shift Scenario

Doubling of public transport and NMT urban travel and about a halving of LDV travel in 2050 v. Baseline

Combined length of transit systems to 2050

			4DS				High Shift			
	2010		2030		2050		2030		2050	
	OECD	non-OECD	OECD	non-OECD	OECD	non-OECD	OECD	non-OECD	OECD	non-OECD
Metro	6,336	4,883	6,970	6,103	7,604	7,324	9,078	18,922	11,820	32,962
BRT	574	1,910	862	3,820	1,149	5,729	4,740	35,781	8,905	69,652
Tram/LRT	10,221	7,983	11,243	9,979	12,266	11,975	13,516	15,896	16,810	23,809
Commuter rail	28,915	4,967	31,806	6,209	34,698	7,450	43,478	40,488	58,040	76,009

Detailed costs - annual averages

Data call for this study

- Sales and stock data for bicycles and e-bikes world wide, and in specific countries and cities (as many as we can obtain)
 - Manufacturing rates and trade data also useful
- Average cycling levels by country
 - Ownership rates
 - Daily trips
 - Trip lengths and trip purposes
 - Distribution of trips by demographic groups
- Bike sharing program data
- Cycling related costs bike prices, maintenance costs, equipment costs
- Generally after most recent data (e.g. 2014) but older data and especially time series data always welcome

Thank you for your attention!

Lew Fulton

http://www.its.ucdavis.edu/